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a b s t r a c t

The problem of determining the generalized accelerations and reactions of constraints in systems with dry
friction is investigated. The necessary and sufficient conditions for the unique solvability of the problem
are obtained, applicable for cases of sliding and static friction. A geometrical approach is used, based on
the introduction of a certain auxiliary parameter space divided into non-overlapping regions in terms
of the number of possible types of motion. In each of these regions there are explicit expressions for
the accelerations and reactions, which enable us, using piecewise-smooth mapping, to express, from the
equations of motion, the generalized forces in terms of the parameters. The solution of the problem is
equivalent to inverting the given mapping. A number of examples are given.

© 2008 Elsevier Ltd. All rights reserved.

The problem considered in this paper dates back to the work of Painlevé,1,2 which indicated paradoxical situations where a correct
solution of the problem was impossible. The numerous investigations since then have generally been devoted to an analysis of specific
mechanical systems with friction. A number of sufficient conditions for correctness have also been obtained.3–7

1. Formulation of the problem

Consider a mechanical system whose equations of motion in the generalized coordinates q∈Rn have the form

(1.1)

wherew = q̈ are the generalized accelerations, the terms Q include the generalized forces and also the velocity-quadratic forces of inertia,
R denotes the reactions of unilateral and non-ideal constraints, and A is the symmetric positive-definite matrix expressing the inertia
properties. In Eq. (1.1), the values of q, q̇ and Q are as specified, and w and R are unknown.

When the system being considered is subject to ideal bilateral constraints only, R 0 in Eq. (1.1), and the generalized accelerations are
defined uniquely. Next in complexity is the case of viscous friction, where there is the explicit relationship

(1.2)

For the problem under discussion, this case is similar to the previous one.
A feature of dry friction is the dependence of the friction forces on the normal components of the reactions. When Eq. (1.1) are formulated,

these components do not disappear, as in the case of ideal constraints, but occur in the equations as unknown quantities. It is also possible
that the values of the normal reactions will be uniquely defined at the stage when Eq. (1.1) are formulated. Here, as earlier, a relationship
of form (1.2) occurs. The complication compared with the case of viscous friction is due to the discontinuous nature of this relationship.
Problems of this kind can be solved by standard methods.8–10 A general result was obtained:11 system (1.1), (1.2) for Coulomb friction
enables w to be determined uniquely (the static and sliding friction coefficients were assumed to be equal).

In the present paper it is proposed that contact laws be added to Eq. (1.1), expressed by a system of relations of rank n. This means
that the unknown quantities wi and Ri (i = 1, . . ., n) can be expressed in terms of the independent parameters � ∈˘ = Rn by means of the
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formulae

(1.3)

where˚j : ˝j → R
2n are differentiable functions. The regions�j have piecewise-smooth bounds and do not overlap, and the combination

of their closures is equal to˘ . Furthermore, the mapping˚ : ˘ → R
2n, equal to�j in each of the regions�j, is continuous.

The traditional method for solving system (1.1), (1.3) for specified generalized forces Q consists of the successive solution of s algebraic
systems with subsequent checking of inclusions

(see Ref. 11). The reverse approach is used below: from system (1.1), (1.3) we express Q in terms of �:

(1.4)

The problem of the solvability of system (1.1), (1.3) reduces to considering the properties of a continuous piecewise-differentiable
mapping �. The surjectivity of this mapping is equivalent to the existence of a solution, and its injectivity is equivalent to its uniqueness.

Example 1. For a system with one degree of freedom and unilateral contact

(1.5)

in the case q1 = 0 and q̇1 = 0, the following conditions of complementarity12 are satisfied

(1.6)

and we have˘ = R and s = 2. Formulae (1.3), corresponding to conditions (1.6), are (the given representation is non-unique):

(1.7)

Example 2. Sliding friction is described by the formula

(1.8)

where N and T are the normal and tangential components of the reaction, � is the coefficient of friction and v is the sliding velocity, which
is a known function of the generalized coordinates and velocities. If the contact is unilateral, then constraint (1.5) exists and conditions
similar to (1.6) (with R1 replaced by N) are satisfied. The dependence of w1 and N on the parameter � is described by formulae similar to
(1.7). In the case of bilateral contact, w1 0; consequently

The retention in this case of two regions of definition is related to the general idea of plotting differentiable mappings and with the presence
of a sign of absolute magnitude in formula (1.8).

Example 3. For static friction, v = 0 and formula (1.8) cannot be used. Ifw /= 0, i.e., sliding begins at the instant considered, then, assuming
in formula (1.8) that

we will arrive at the relations1

(1.9)

where �* is the static coefficient of friction (when the adhesion component of the friction is taken into account forces, it must be assumed
that � < �*). Suppose that, according to the conditions of contact, w ∈R, i.e. sliding is only possible along a certain straight line, with a
unilateral frictional contact. We will assume that the coordinate q2 ≥ 0 corresponds to the normal direction and that q1 ∈R corresponds
to the tangential direction. The laws (1.5) and (1.9) include four cases: the start of sliding to the left or to the right, rest, and detachment.
Formulae (1.3) corresponding to them are as follows (see Fig. 1):

(1.10)

2. General conditions of existence and uniqueness

In a general formulation, we will consider the continuous mapping  : ˘ → R
n, which is continuously differentiable in each of the

closed regions ¯̋
j possessing the above properties. In each of the regions�j we will define the Jacobian matrix Jj(�), the elements of which

are partial derivatives
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Fig. 1.

Theorem. Suppose the following conditions are satisfied:

1) det Jj(x)> 0, x∈˝j; j = 1, . . . , s (2.1)
2) The elements of the matrices J−1

j
(x) are uniformly bounded in P.

3) At the boundary points of the regions�j, the mapping  is one-to-one.

Then  is a bijection. If the Jacobians (2.1) can take values of both signs, then the mapping  is not one-to-one.

Proof. If s = 1, we obtain the well-known result concerning global diffeomorphism.13 If s > 1, then, according to the principle of region
conservation, �(�j) are also regions, where internal points are mapped into internal points and the boundary points are mapped into
boundary points.

We will show that, in each of the regions�j, the mapping � is injective. Since

then taking account of condition 2, we obtain

(2.2)

where C is a certain constant. If �(x1) = �(x2) = y* for certain x1, x2 ∈˝j , then, when y* changes, two branches of the inverse images are
retained, and here, by virtue of inequality (2.2), they are unable to merge. Continuing y* to the boundary of the region �j, we arrive at a
conclusion concerning the non-uniqueness of the mapping � at the boundary, contradicting condition 3.

The next step is to prove the equation

(2.3)

according to which the image of the boundary is equal to the boundary of the image (from the principle of region conservation it follows
only that the left-hand side of Eq. (2.3) is a subset of the right-hand side). If ȳ∈ ∂ (˝j), then ȳ = lim yi, yi =  (xi), xi ∈˝j . Since the
sequence {yi} is fundamental, it follows that, owing to inequality (2.2), the sequence of inverse images {xi} is also fundamental, and here
lim xi = x̄∈ ¯̋

j . However, if x̄∈˝j , then it is also necessary that ȳ∈ (˝j). Consequently, x̄∈ ∂˝j .
The meaning of inequalities (2.1) still requires clarification. Suppose x0 is a regular point of the common boundary of regions �1 and

�2. According to the conditions, for any tangential direction t we have

As regards the normal direction n, on account of conditions (2.1) the vectors ∂�(�1)/∂n and ∂�(�2)/∂n lie on the same side of the
tangential plane. Since the vector n is directed from point x0 towards only one of the regions �1 and �2, the images �(�1) and �(�2)
do not overlap. On the other hand, a change in sign of the Jacobian at the boundary would indicate their overlapping. Finally, a change in
sign of the Jacobian at an internal point of region�j denotes the presence of a singularity and the absence of uniqueness. The theorem is
proved.

Corollary 1. In the case where all mappings �(�j) are linear, conditions (2.1) are necessary and sufficient for a unique solution of the equations
of motion to exist for any Q ∈Rn.

In fact, in this case the matrices Jj are constant, and the conditions of the theorem follow from conditions (2.1). Note that uniqueness
also occurs in the case where all Jacobians in conditions (2.1) are negative. The use of coordinate systems with a positive orientation is
more customary.

Example. Suppose that in the system there is unilateral contact (1.5) with friction (1.8), with a tangential velocity component q̇2 /= 0.
After substituting relations (1.7) and (1.8) into system (1.1), we obtain a system with a new matrix Ā. The criterion for unique solvability
of the system, equivalent to conditions (2.1), is that the matrix Ā belongs to the class of P-matrices,14 which means that all the principal
minors are positive. Similarly, it is possible to investigate systems with several unilateral or bilateral contacts and sliding friction.15
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3. Systems with fixed lines of action of the friction forces

Suppose that, at each point of frictional contact, the tangential and normal directions are uniquely defined, which enables the
Amonton–Coulomb law to be used in form (1.8) or (1.9). The contacts are not necessarily kinematically independent, i.e., sliding at one of
the points may preclude rest at another point, and so on. In any case, each possible movement of the system leads either to loss of contact
or to the start of sliding in one of the two possible directions, or to retention of zero slippage (rolling).

We will show that, for systems of the type considered, linear coordinate mappings�j can be chosen. We will divide the space˘ = Rn
into regions �j according to the possible types of motion, and we will introduce into � a Cartesian system of coordinates. Each of the
regions�j is a polyhedron, every face of which contains an origin of coordinates and corresponds to a change in state of one of the contacts.
If all the contacts are independent of each other, the mappings �j are expressed by linear formulae of type (1.7) or (1.10). The presence
of kinematic relations leads to functional relations between motions or velocities, and also between reactions. If the mechanical system
considered has finite or linear differential constraints, then these functional relations are also linear. The following result was obtained.

Corollary 2. Suppose all frictional contacts belong to one of two groups: either the sliding velocity is non-zero or it is zero but sliding can begin
only along some straight line (which differs for the different contacts). Conditions (2.1) are then necessary and sufficient for a unique solution of
the equations of motion to exist for any Q ∈Rn.

Remark 1. For the given problem, sufficient conditions of existence and uniqueness were obtained earlier3 on the basis of additional
variables and a corresponding iterational algorithm. These conditions require the Jacobian matrices, similar to those considered here, to
belong to the class of P-matrices. In accordance with the above results, the given requirements are slightly exaggerated.

Example 1. The problem of the plane-parallel motion of a rod with one of its ends C in contact with a horizontal rough support has a
history stretching back more more than 100 years.2,3,16 The coordinates of point C will be taken as the generalized coordinates q1, q2, and
the angle of inclination of the rod to the support will be taken as q3. Considering the mass and radius of inertia of the rod to be unique, and
putting l = |CG| (where G is the center of mass of the rod), we will formulate system (1.1) using the principal theorems of dynamics:

(3.1)

where wi = q̈i (i = 1, 2, 3).

The contact conditions contain a unilateral constraint, and also the law of dry friction:

(3.2)

(this last inequality corresponds to no slippage). We will assume that, at a given instant of time, q2 = 0 and v2 = 0, i.e. the vertical velocity
component of the contact point is zero. We will take ˘ = R3 as the parameter space, and the mapping �, which figures in the theorem,
will be specified by formulae (1.10), where in all cases it must be assumed that

Substituting these formulae into system (3.1), we obtain for the mapping �

(3.3)

Taking expressions (1.10) into account, we will write the Jacobian matrices in the form

(3.4)

where the superscript on the variable � has been omitted.
Conditions (2.1) reduce to the unique inequality2,16

(3.5)

We will give a geometrical interpretation of the solution of system (3.1) when condition (3.5) is satisified; we will assume that a > 0.
Omitting the variable w3 from Eq. (3.3), we will present them in the form

(3.6)
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Fig. 2.

In the (Q̄1, Q̄2) plane, the images of the regions (1.10) are bounded by the lines

(3.7)

(Fig. 2a). Depending on the position of the point (Q̄1, Q̄2) in a particular region �(�j) (j = 1, . . ., 4), it is possible to determine the form of
motion in system (3.1) and, accordingly, eliminate surplus unknowns. Hence, an exhaustive search of all possibilities is no longer necessary.

Suppose now that a > 0 and that the condition (3.4) is not satisfied. The second of the lines (3.7), which is the boundary between �1 and
�3, then lies in the upper half-plane (Fig. 2b). Consequently, region �1 is the overlap of regions �3 and �4. When the point (Q̄1, Q̄2) falls
in region �1, three solutions of system (3.1) are possible, corresponding to detachment, rest, and sliding – the so-called non-uniqueness
paradox.1–3

Finally, for the values of the parameters for which relation (1.5) changes into an equality, the first two lines (3.7) merge, and the region
�1 disappears. For values (Q̄1, Q̄2) ∈�j (j = 2, 3, 4), the motion is defined uniquely. However, if

then system (3.6) has a continuum of solutions corresponding to sliding of the rod to the left at an arbitrary acceleration w1 ∈ (Q̄1,0):

Example 2. We will modify the previous example, considering the constraint between the rod and the support to be bilateral. Here, in Eq.
(3.1) it must be assumed thatw2 0, and the normal reaction N may be both positive and negative. The number of components into which
the space � is divided increases to 6: to the regions �1, �2 and �3 are added the three parts into which the region of detachment �4
breaks down. These parts –�′

3 = {�|�2 > 0, �2 > |�1|} (rolling),�′
1 = {�|−�1 > �2 > 0} (sliding to the left) and�′

2 = {�|�1 > �2 > 0} (sliding
to the right) – are centrally symmetric with the first three regions. For them, the mappings �′

1, �′
2 and �′

3 are specified by formulae
similar to (1.10) but with a change in the sign of �. Consequently, the conditions of existence and uniqueness (3.5) also remain unchanged.

Example 3. Adding to the system from Example 1 a restriction in the form of a vertical wall (Fig. 3) against which the end C of the rod
rests, we will obtain the well-known problem of the equilibrium of a ladder upon which a person is standing (see, for example, Refs 17 and
18). Suppose, to begin with, that the wall is smooth, and the constraint between the wall and the rod is bilateral. Then, q1 and q2 can be

Fig. 3.
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taken as generalized coordinates, and the angle q3 is defined by the formula

(3.8)

where d is the abscissa of the surface of the wall. In Eq. (3.1), the reaction of the wall N′ will be added:

(3.9)

The quantityw3 can be expressed in terms ofw1, twice differentiating formula (3.8), and then N′ can be omitted from the third equation
of (3.9). As a result we obtain

(3.10)

Substituting relations (1.10) into formulae (3.10), we obtain the following expressions for the Jacob matrices

Consequently, conditions (2.1) reduce to the inequality

(3.11)

If this inequality has a positive meaning, then detJ1 < 0. The arrangement of the regions�j (j = 1, . . ., 4) is then similar to that presented in
Fig. 2b. Here, for certain values of the external forces, system (3.10) has three solutions corresponding to immobility of the rod, its sliding
to the left and its detachment from the support.

We will investigate the following problem: will the “ladder” remain at rest under specified external forces? For a positive solution it is
necessary to establish that the point (Q̃1, Q̃2) lies in the region�3 but does not lie in any of the regions�j, j /= 3. Suppose gravity P alone
is acting on the rod. Then

(3.12)

whence

If inequality (3.11) is violated, then, as can be seen from Fig. 2b, the conditions of rest given above are satisfied. If this inequality is
satisfied, however, it is necessary to ascertain the quarter in which the boundary between �1 and �3 lies (see Fig. 2a). Assuming in
equalities (3.10) that

we obtain the following equation for this boundary

Here, taking inequality (3.11) into account, we have Q̃2 < 0, and therefore the rod begins to slide when Q̃1 > 0, while it remains at rest
when Q̃1 ≤ 0.

The following conclusion can be drawn: the condition

(3.13)

is necessary and sufficient for the rod to remain at rest. Note that, as a person climbs up the ladder, the system parameters change in such
a way that the left-hand side of inequality (3.13) remains unchanged while the right-hand side increases. Here, the coefficient of friction
necessary to prevent slippage of the ladder also increases.

Example 4. We will assume the wall to be rough, and the constraint between it and the rod to be unilateral:

where q1 and q2 are now the coordinates of the center rod. The reactions of the wall N′ and T′ will be added to the acting forces, so that the
equations of motion will take the form
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(3.14)

Likewise, it is not difficult to set up a group of relations similar to (3.2) and (1.6) for the contact of the rod with the wall:

where �′ is the coefficient of friction at this contact.
In the coordinate space˘ = R3 there are ten regions �j bounded by planes �2 = 0, �3 = 0 (corresponding to detachment of one of the

ends of the rod from the support), �3 = −|�1| in the region �2 ≥ 0 and �2 = −|�1| in the region �3 ≥ 0 (corresponding to detachment at one
of the points) and also �2 + �30 = −|�1| in the region �2 ≤ 0, �3 ≤ 0 (corresponding to double contact). The mappings �j are plotted by
analogy with (1.10), and here, in the regions of double contact�8 (sliding to the left) and�9 (sliding to the right), we have

(3.15)

while the formula for �9 is obtained from (3.15) by replacing the values of the coefficients of friction with the opposite values, with a
simultaneous change in sign from minus to plus in the expression for ϑ.

Among the possible motions of the rod there are those for which it slides over the support, detaching itself from the wall, and therefore
condition (3.5) remains in force. Furthermore, it can slide along the wall, detaching itself from the support; for this case, by analogy with
condition (3.5), we obtain the condition

(3.16)

There remain motions where both ends of the rod slide over the supports. Substituting expression (3.15) into Eq. (3.14) we obtain

The matrix J9 can be found from J8 by replacing the values of � and �′ by the opposite values. The conditions for unique solvability are
described by the system of inequalities (3.5), (3.16), and also by the inequality

(3.17)

For the case of a smooth wall (�′ = 0), inequality (3.16) is satisfied automatically, and condition (3.17) is identical with (3.11).
We will check to see whether the system is in equilibrium under gravity. For this, it is necessary to establish that the point with

coordinates (3.12) lies in the region �10 but does not lie in regions �8 (sliding to the left) and �4 (detachment from the support). Note
that the condition of equilibrium of the ladder, obtained earlier by a geometrical method (see reference 17, §193) and expressed by the
inequality

(3.18)

means that Q ∈�10. Our calculations indicate that, if inequality (3.16) has the opposite meaning, with h′ < 0, then inequality (3.18) is
insufficient for the system to be in equilibrium: here, condition (3.17) is also violated, and Q ∈�4 ∩�8, i.e., along with equilibrium, slippage
of the ladder is possible. If h′ < 0, condition (3.18) is necessary and sufficient for equilibrium.

From a practical viewpoint, the inequality h′ < 0 means that the centre of mass of the person lies above the upper end of the ladder, the
latter being much lighter than the person.

4. Systems with an uncertain direction of sliding

In the general case, in formulae (1.8) and (1.9) the relative velocities v, the accelerations w and the component reactions T are vectors
lying in tangential planes determined for each of the contact points. For contacts where v /= 0, the directions of the reactions at a given
instant are known, and the above methods can be used. Greater difficulties arise if there are contact points at which the relative velocity
is zero and the directions in which sliding can begin occupy a tangential plane.

In coordinate space�, two regions separated by a conical surface correspond to two versions of law (1.9) (the start of sliding and rolling).
In the case of unilateral contact, a third version is also possible: weakening of the constraint. Division of the space P3 into three regions
can be assigned to such contact:�1: {�3 > 0} – detachment;˝2 : {�3 < 0,�2

1 + �2
2 < �

2
3} – rolling;˝3 : {�3 < 0,�2

1 + �2
2 > �

2
3} – sliding.

For region �2, the mapping (1.3) is linear: it can be assumed that w = 0 and (T, N) = −(��1, ��2, �3). In the case of detachment, w = �
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and (T, N) = 0. In region �3, formula (1.9) is non-linear in accelerations, and it is more convenient to describe it in a cylindrical system of
coordinates, assuming that

(4.1)

The subscripts t and n correspond to the tangential and normal components of the vector.
In accordance with definition (4.1), various points of the surface of the cone, depending on the direction of slippage, correspond to the

particular point wt = 0 of law (1.9), which enables global continuity of the mapping � to be achieved.
Unlike the previous section, formulae (4.1) lead to a mapping � that is linear in �3 and � but non-linear in �. Because of this, checking

of the conditions of the theorem is considerably more complicated. Suppose, to begin with, that the frictional contacts in the system are
independent of each other. Then, each of the components of the mapping � is linear in Ni and �i, with the coefficients periodic with respect
to �i (the subscript i corresponds to various points of contact). When compiling the Jacob matrix Jj(�), three rows will correspond to each
of the contact points, corresponding to derivatives with respect to the variables Ni, �i and �i. The elements of two of these rows depend
only on �i, while the elements of the third row are linear functions of Ni and �i. Consequently, detJj(�) is a polynomial in N and �, with the
periodic coefficients linear in each of the variables Ni and �i. In view of the independence of these variables, inequalities (2.1) mean that all
the coefficients of the given polynomial are positive for all �i. On the other hand, condition 2 of the theorem also follows from this, as the
cofactors of the matrix Jj(�) are also polynomials of an order not exceeding the order of the polynomial detJj(�). Note that degeneracy of
the Jacob matrices at the boundary points Ni = Ri = 0 is possible. The uniqueness at these points follows from the theorem of the mechanical
energy and dissipative nature of friction. Finally, the third condition of the theorem follows from the injectiveness of the mapping set by
formulae (4.1). The following assertion is proved.

Corollary 3. Suppose all three-dimensional frictional contacts in system (1.1) are independent. Then, satisfaction of inequalities (2.1) in the
general case is necessary and sufficient for a unique solution of the equations of motion to exist for any Q ∈Rn.

Remark. The exceptions are cases where just one of the coefficients of the polynomial detJj(�) may take zero values but does not take
negative values. In this case the second condition of the theorem does not follow from the first condition and requires separate checking.

Example. Consider a rigid body in contact with a stationary rough support at a single point C. At a given instant of time, the velocities of
all points of the body are zero. Using the basic theorems of dynamics, we will write Eq. (1.1) in the form

(4.2)

where m is the mass of the body, I is the inertia tensor of the body, vG and � are the velocity of the centre of mass G and the angular velocity,
rC = GC is the radius vector of the contact point, and F and M are the principal vector and principal moment of the external forces. With
these assumptions, we have the following expression for the velocity of the contact point vC

(4.3)

Substituting expressions (4.2) into formula (4.3), we obtain the equation

(4.4)

It can be shown by direct checking that the matrix B is symmetrical and positive, and Eq. (4.4) can therefore be written in the form (1.1),
where

Solving this equation for w and R, it is possible to determine ω̇ uniquely from the second equation of (4.2). Consequently, the problem
under discussion reduces to considering Eq. (1.1) in R3 under condition of complementarity (1.6) in the normal direction and with friction
law (1.9).

In regions�1 and�2 the mapping � is linear, and inequalities (2.1) are satisfied. In region�3 this mapping, taking relations (4.1) into
account, is expressed by the formula

(4.5)

We will write the Jacob matrix J3 =∂Q/∂(�, �, �3) in the form of a set of columns

(4.6)

We have

(4.7)
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where Aij are the cofactors of the matrix A. As the quantity �3 is negative in the region�3, the conditions of Corollary 3 mean that

(4.8)

From the geometrical viewpoint, the first inequality of (4.8) means that, in the space Q, the region of detachment does not overlap with
the cone of friction, while the second inequality means that the region of sliding does not overlap with this cone. Algebraic checking of the
first inequality is simple: owing to the definition of the matrix A, it is equivalent to the relation

which is similar to inequality (3.5).
We will write the second inequality of (4.8) in the form

(4.9)

Using the universal trigonometric substitution

inequality (4.9) can be reduced to the algebraic form

(4.10)

The following cubic resolvent corresponds to polynomial (4.10)

(4.11)

The satisfaction of inequality (4.10) for all t ∈R is equivalent to satisfying the inequality p4 > 0 together with the requirement of the
presence in the resolvent (4.11) of one negative and two positive roots.19 The criterion for the presence in polynomial (4.11) of three real
roots is the condition for its discriminant to be non-positive:

(4.12)

As the free term of this polynomial is positive, it can have either one or three negative roots. For the second of these cases, to be excluded
from consideration, the Hurwitz conditions20 are satisfied:

(4.13)

Thus, the second of conditions (4.8) consists of inequalities p4 > 0 and (4.12), and also a set of inequalities opposite to (4.13) (bearing in
mind that just one of these opposite inequalities is satisfied).

Checking of these conditions in practice is elementary but fairly cumbersome. The following simple inequality, sufficient for validating
conditions (4.8) for any �, may therefore turn out to be useful

(4.14)

Note that determinant (4.7) vanishes for � = �3 = 0, corresponding to the boundary of region�3. We will show that this equation has no
non-zero solutions. Multiplying both sides of this equation by the vector e�, we obtain

which contradicts the inequalities � > 0 and �3 < 0.
We will now consider the case of dependent frictional contacts. Note that here it is not always possible to determine the reactions at

each of the contacts. It is a matter solely of searching for the vector R in system (1.1), the components of which are made up of individual
reactions. For each three-dimensional contact we will use coordinates of the form (4.1), considering the differentials of these variables to
be independent by virtue of the kinematic constraints imposed. The Check to see whether the conditions of the theorem are satisfied is
carried out in the same way as in the case of independent contacts.
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Example 1. The two point masses m1 and m2 are connected by a weightless rod of length 2l and pressed against a rough plane with a
coefficient of friction � by forces N1 and N2 normal to the plane.11 The external forces act in the same plane. At the initial instant of time,
the system is at rest. The theorems of momentum and moments (relative to the centre of the rod) are expressed by the formulae

(4.15)

where Q1, Q2 and Q3 are projections of the principal vector and the principal moment of external forces divided by l, TiX and TiY (i = 1, 2) are
the projections of the friction forces onto the coordinate axes (the abscissa axis passes through the point masses),w1 andw2 are projections
of the accelerations of the points onto the ordinate axis, andw3 is the projection of the accelerations onto the abscissa axis. We will divide
the coordinate space˘ = R3 into the following parts:

(4.16)

The regions�j (j = 1, 2) correspond to rotation of the rod about the point m1, and here

(4.17)

By analogy with formulae (4.17), coordinate mappings are plotted for regions�j (j = 3, 4) corresponding to rotation about the point m2.
It is possible to check that, in each of these four regions, the mapping � is linear, and here inequalities (2.1) are satisfied.

In the region of stagnation�5 we have

and here a unique definition of the components TiX and T2X is impossible in view of the static indeterminacy of the system. It can be stated
that, in this region, R = −Q, and here the boundary of the image of the region of stagnation when mapping � is given by the equation

Consequently, the problem is solved uniquely.
In region�6 (sliding at both points) we assume that

(4.18)

Obviously, formulae (4.18) establish a one-to-one correspondence between w and �, the Jacobian of which is equal to unity. Therefore,
when checking the conditions of the theorem, it is sufficient to examine the Jacob matrix ||∂Q/∂w||. As follows from formulae (4.15) and
(4.18)

and here the function W is strictly convex. It follows from this that inequalities (2.1) are satisfied and the solution of system (4.15) is unique.
Note that the conclusion given earlier was obtained14 from the property of uniqueness of the extremum of the functionW − Qw.

Example 2. A generalization of the previous example is the problem of the equilibrium of a rigid body resting in two small areas on a
rough plane, the so-called “bench”.8 Besides gravity, a certain force is acting on the body, the line of action of which lies in the support
plane. We will consider the problem in a restricted formulation, assuming that the height of the centre of mass of the bench, G, above
the support remains unchanged and equal to h. Furthermore, the bench possesses two vertical planes of symmetry passing through the
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point G, one of which also contains the contact points. We will retain the former notation for the variables, and then the theorems of the
momentum and moments (about the point G′ – the projection of the centre of mass onto the support) are expressed by the relations

(4.19)

where m is the mass of the body and J is its central moment of inertia about the vertical.
In spite of the similarity of systems (4.15) and (4.19), they differ very considerably: whereas in the previous example the normal

components of the reactions N1 and N2 were assumed to be specified, in the present case they depend on the generalized accelerations and
are to be calculated. We will use the theorem of moments for the point G′ projected onto the axis G′Y′, and we will also take into account
the nature of the external forces:

(4.20)

where P is the weight of the body. Solving system (4.20), we obtain

(4.21)

Note that a difference between this and the previous examples appears only whenw3 /= 0, which corresponds to sliding at both supports,
and therefore, to check the correctness of the problem, it is sufficient to calculate the matrix ||∂Q/∂w|| in region �6 taking into account
relations (4.21). The determinant of this matrix is a linear function of the parameter �:

As shown by calculations,�0 > 0, and the quantity�1 can be both positive and negative. When�1 < 0, for fairly large values of � system
(4.19) may have a non-unique solution.
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